THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050 Mathematical Analysis (Spring 2018) Tutorial on Mar 21

If you find any mistakes or typos, please email them to ypyang@math.cuhk.edu.hk

All through this note, A denotes the domain of a function and c is a cluster point of A . δ-neighborhood of c : $V_\delta(c) = (c - \delta, c + \delta)$. Deleted δ -neighborhood of $c : W_{\delta}(c) = (c - \delta, c + \delta) \setminus \{c\}.$

Part I: Comments

1. In the definition of limit of a function $f(x)$ at c:

 \cdots if $x \in A$ and $0 < |x - c| < \delta$, then \cdots

you should also notice the words in red. To see what it means, let's consider the function f(x) = \sqrt{x} defined on $A = [0, \infty)$ and $c = 0$. Then the function is not defined in any left-hand neighborhood of c.

However, from the definition we can check that $\lim_{x\to 0} = \lim_{x\to 0+}$ √ $\overline{x} = 0$. Because we can choose $\delta(\varepsilon) = \varepsilon^2$ and then

 $x \in A$ and $0 < |x - c| < \delta$ means $x \ge 0, 0 < |x| < \varepsilon^2 \Longrightarrow 0 < x < \varepsilon^2$.

2. The Sequential Criterion is analogous to Theorem 3.4.2 for the subsequences:

A sequence $X = (x_n)$ of real numbers converges to a real number x if and only if any subsequence $X' = (x_{n_k})$ of X also converges to x.

Part II: Reference exercises.

- 1. Suppose (x_n) is a sequence of positive real numbers and satisfies $x_n +$ 4 x_{n+1}^2 $< 3, \forall n$. Show that (x_n) is convergent and find its limit.
- 2. Suppose the sequence (x_n) is defined by

$$
x_1 = \frac{1}{2}
$$
, $x_{n+1} = x_n^2 + x_n$, $n = 1, 2, \cdots$.

Show that $\sum_{n=1}^{\infty}$ $n=1$ 1 $1 + x_n$ $= 2.$

Proof: It can be shown that $\lim_{n\to\infty} x_n = +\infty$. (Otherwise (x_n) is convergent since it's a strict increasing sequence. Suppose $\lim_{n\to\infty} x_n = L$, then $L = L^2 + L \Longrightarrow L = 0$, contradiction) Now $x_{n+1} = x_n^2 + x_n = x_n(x_n + 1)$ gives

$$
\frac{1}{1+x_n} = \frac{x_n}{x_{n+1}} = \frac{x_n^2}{x_n x_{n+1}} = \frac{x_{n+1} - x_n}{x_n x_{n+1}} = \frac{1}{x_n} - \frac{1}{x_{n+1}}.
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{1+x_n} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1+x_k} = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{x_k} - \frac{1}{x_{k+1}} \right) = \lim_{n \to \infty} \left(\frac{1}{x_1} - \frac{1}{x_{n+1}} \right)
$$

$$
= \lim_{n \to \infty} \left(2 - \frac{1}{x_{n+1}} \right) = 2.
$$

- 3. Determine whether the converse statement of the Order-preservation property is true: if $\lim_{x\to c} f(x) = a$, $\lim_{x\to c} g(x) = b$ and $a \leq b$, then there exists $\delta > 0$ such that whenever $0 < |x - c| < \delta$ we have $f(x) \leq g(x)$.
- 4. Determine whether the following statements are true or false.
	- (a) If $\lim_{x\to c} f(x) = a$, $\lim_{x\to c} g(x) = b$ and there exists a deleted δ -neighborhood in which $f(x) <$ $g(x)$, then $a < b$.
	- (b) If $sin(f(x))$ has a limit at $c = 0$, then $f(x)$ also has a limit at 0.
	- (c) Suppose $f(x): \mathbb{R} \to \mathbb{R}$. If $\lim_{n \to \infty} f\left(\frac{a}{n}\right)$ n $= 0$ for all $a \in \mathbb{R}$, then $\lim_{x \to 0} f(x) = 0$.
	- (d) Suppose $\lim_{x \to c} f(x) = A > 0$, $\lim_{x \to c} g(x) = B$, then $\lim_{x \to c} f(x)^{g(x)} = A^B$.
	- (e) If $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x)$ does not exist, then $\lim_{x \to c} (f + g)(x)$ does not exist.
	- (f) If $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x)$ does not exist, then $\lim_{x \to c} (fg)(x)$ does not exist.
	- (g) If neither $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} g(x)$ exists, then $\lim_{x\to c} (f+g)(x)$ does not exist.
	- (h) If neither $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} g(x)$ exists, then $\lim_{x\to c} (fg)(x)$ does not exist.
- 5. Compute the following limits.

(a)
$$
\lim_{x \to 0} x \left[\frac{1}{x} \right]
$$

\n(b) $\lim_{x \to +\infty} \left[\sqrt{(x+a)(x+b)} - x \right]$
\n(c) $\lim_{x \to 1} \frac{x^m - 1}{x^n - 1}, \quad m, n \in \mathbb{N}$
\n(d) $\lim_{n \to \infty} \sin \left(\pi \sqrt{n^2 + 1} \right)$
\n(e) $\lim_{x \to +\infty} \left(\sin \sqrt{x+1} - \sin \sqrt{x} \right)$

6. Let $f, g : (a, +\infty) \to \mathbb{R}$ and $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$. Show that $\lim_{x \to +\infty} g(f(x)) = +\infty$.

Proof: From $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$, we have that $\forall M > 0$, $\exists L > 0$, s.t. $x >$ $L \Rightarrow g(x) > M$. And for this fixed L, there exists $K > 0$ such that $x > K \Rightarrow f(x) > L$ and consequently $g(f(x)) > M$.

Therefore, $\lim_{x \to +\infty} g(f(x)) = +\infty$.

- 7. Suppose $\lim_{x \to +\infty} f(x) = L$, show that $\lim_{x \to +\infty}$ $\left[xf(x)\right]$ \overline{x} $= L.$ **Solution:** Notice that $x(f) - 1 < [xf(x)] \leq xf(x)$ and then use Squeeze Theorem.
- 8. Prove that $\lim_{x\to 0} f(x)$ exists $\iff \lim_{x\to 0} f(x^3)$ exists. Does the same conclusion hold for $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} f(x^2)$?
- 9. Suppose $f(x)$ is monotone on $A = (a, b)$ and there is a sequence (x_n) in A such that $\lim_{n \to \infty} x_n =$ a and $\lim_{n \to \infty} f(x_n) = L$. Show that $\lim_{x \to a^+} f(x) = L$.
- 10. Suppose $f(x)$ is strictly increasing on $A = [a, b]$ and there is a sequence (x_n) in A such that $\lim_{n\to\infty} f(x_n) = f(a)$. Show that $\lim_{n\to\infty} x_n = a$. Solutions to Problem 9 and 10 will be provided later if necessary.

11. (Generalizations of the Sequential Criterion)

- (a) Show that if we replace the condition "for every sequence $(x_n) \cdots$ " in the **Sequential Criterion** by "for every monotone sequence (x_n) " then the conclusion still holds.
- (b) What if we require in addition that "for every sequence (x_n) satisfying $|x_{n+1} c|$ $|x_n - c| \cdots$, while other conditions unchanged?
- (c) We can weaken the condition as: function $f(x)$ has a limit at $c \in \mathbb{R}$ if and only if for every sequence (x_n) in $A \setminus \{c\}$ that converges to c, the sequence $(f(x_n))$ converges. (Notice that we are not assuming that $(f(x_n))$ converges to the same limit)

12. (Optional) From $\lim_{n\to\infty} \left(1+\right)$ 1 n \setminus^n $= e$, establish the following results.

(a)
$$
\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e
$$

(b)
$$
\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1
$$

(c) $\lim_{x \to 0} \frac{a^x - 1}{a^x} = \ln a$ (a)

(c)
$$
\lim_{x \to 0} \frac{a}{x} = \ln a \quad (a > 0).
$$